Kies de Nederlandse taal
Course module: 202300054
Twente Introduction Mechanical Engineering (TIME)
Course infoSchedule
Course module202300054
Credits (ECTS)1.5
Course typeStudy Unit
Language of instructionEnglish
Contact R. Hagmeijer
Examiner R. Hagmeijer
Contactperson for the course R. Hagmeijer
Examiner J.P. Schilder
Academic year2023
Starting block
RemarksPart of module 1 B-ME
Application procedureYou apply via OSIRIS Student
Registration using OSIRISYes
Number of insufficient tests0
Twente Introduction Mechanical Engineering (TIME)
TIME is developed to let students experience how engineering problems can be solved in a systematic way, and how mathematics plays a major role in this process.
We explain how the period of a pendulum is computed. The pendulum problem is an excellent showcase of how engineering problems can be solved in a systematic way. It also greatly exemplifies the role of mathematics in this process since it is related to several mathematical concepts and theorems such as differentiation, linear differential equations, Taylor series approximation, and so forth.
Besides content related learning objectives (see below), the overall aim of TIME is to awake the curiosity in students and motivate them for mechanical engineering problems and challenges. TIME consists of 5 lectures where students get familiar with the course content and 5 tutorials where students can individually practice the course content on a similar problem. Because TIME is a base for studying Mechanical Engineering in Twente we expect all students to be present.
After successfully finish TIME the student is able to solve a mechanical engineering problem in a systematic way. This is described in the following smaller learning objectives:
The student is able to:
  • Analyse the problem by identifying the governing parameters and to perform a dimension analysis.
  • Describe the position of the mass in various coordinate systems and calculate from that the velocities and accelerations in multiple directions.
  • Draw a free body diagram, to identify the forces working on the body, and to derive the governing differential equation(s) by application of Newton’s second law.
  • To solve the differential equation(s) and to verify the solution by checking its dimensions and behavior, by checking the boundary conditions, and by sketching the solution.
This is a part of module 1, ME 1 Design and Manufacturing of the Bachelor Mechanical Engineering. See here for the compete description of the module.

Non-ME students can take this course if they meet the entry requirements.
Assumed previous knowledge
Module 1
Participating study
Bachelor Mechanical Engineering
Required materials
TIME - Lecture Notes - Twente's Introduction to Mechanical Engineering, Hagmeijer, August 2018 (will be supplied by the programme)
Recommended materials
Instructional modes




Kies de Nederlandse taal