SluitenHelpPrint
Switch to English
Cursus: 202200159
202200159
Embedded Artificial Intelligence
Cursus informatie
Cursus202200159
Studiepunten (ECTS)5
CursustypeCursus
VoertaalEngels
Contactpersoonprof.dr.ir. A.B.J. Kokkeler
E-maila.b.j.kokkeler@utwente.nl
Docenten
VorigeVolgende 1
Examinator
dr.ir. N. Alachiotis
Contactpersoon van de cursus
prof.dr.ir. A.B.J. Kokkeler
Examinator
prof.dr.ir. A.B.J. Kokkeler
Examinator
dr. D.V. Le Viet Duc
Examinator
dr. C.G. Zeinstra
Collegejaar2022
Aanvangsblok
2A
AanmeldingsprocedureZelf aanmelden via OSIRIS Student
Inschrijven via OSIRISJa
Cursusdoelen
After successfully passing the Embedded AI course, a student can:
  • explain basic ML/AI algorithms
  • construct ML/AI algorithms using basic building blocks
  • analyse functional and non-functional requirements of AI applications and based on that, select the most suitable embedded processing platform
  • implement (building blocks of) ML/AI algorithms onto embedded processing platforms
  • analyse the effects of implementation on the performance of the algorithm
  • assess the overall quality of the implementation (link between algorithm and implementation)
Inhoud
In general terms, the Embedded AI course consists of the following topics:
  • Basics of machine learning and inference
  • Elementary building blocks of AI/ML algorithms
  • Non-standard computing- and resource-bounded (time, space, power) platforms for Embedded AI (microcontrollers, FPGA’s) Communication and sensing
  • Mapping of algorithmic building blocks onto computing platforms.
Applications (computer vision, natural language processing, localization, health monitoring)

Assessment
  • Test on the contents taught during the lectures (50%).
'< 10 students' => oral examination
'> 10 students' => written examination
  • Presentation and demonstration of project results + Written report (50%)
Project groups of 3-5 students, depending on the number of participating students.  
Voorkennis
- Basic programming skills
- Basic skills concerning programming hardware using a hardware description language
- Mathematics at (EE, CS, AT, AM, AP) bachelor's level
Participating study
Master Embedded Systems
Participating study
Master Electrical Engineering
Participating study
Master Computer Science
Verplicht materiaal
Book
Efficient Processing of Deep Neural Networks, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, Morgan & Claypool Publishers. ISBN 9781681738314
Aanbevolen materiaal
-
Werkvormen
Hoorcollege

Presentatie(s)
AanwezigheidsplichtJa

Project onbegeleid
AanwezigheidsplichtJa

Toetsen
Written/Oral Exam, Presentation, Project Report

SluitenHelpPrint
Switch to English