Sluiten Help Print
 Cursus: 202200148
 202200148Vector Calculus
 Cursus informatie
Cursus202200148
Studiepunten (ECTS)2
CursustypeOnderwijseenheid
VoertaalEngels
Contactpersoondr. T.S. Craig
E-mailt.s.craig@utwente.nl
Docenten
 Examinator dr. T. Akkaya Contactpersoon van de cursus dr. T.S. Craig Examinator dr. T.S. Craig
Collegejaar2022
Aanvangsblok
 2A
OpmerkingPart of module 3 EE.
Minor students: register for the minor!
AanmeldingsprocedureZelf aanmelden via OSIRIS Student
Inschrijven via OSIRISJa
 Cursusdoelen
 body { font-size: 9pt; font-family: Arial } table { font-size: 9pt; font-family: Arial } 1. Calculate integrals of multivariable functions determine whether a given vector field is conservative and if so, identify its potential parametrise curves and surfaces and compute line integrals of scalar and vector fields 2. apply the theorems of Gauss (Divergence), Green and Stokes compute the divergence and curl of a vector field and explain their physical meanings decide which type of integral is relevant for each application
 Inhoud
 body { font-size: 9pt; font-family: Arial } table { font-size: 9pt; font-family: Arial } This course focuses on the calculation of vector fields. The concepts of rotation, divergence and gradient are introduced, and special attention is given to conservative vector fields. In addition, integrals of vector fields along a line, a surface and 3D volume are treated, using the theorems of Green, Stokes and Gauss (Divergence) to establish relationships between these different types of integrals.  This provides more insight into the meaning of integrals of vector fields and important theoretical relationships, but can also often be used to calculate these integrals more easily. The three big theorems of Vector Calculus extend the Fundamental Theorem of Calculus into higher dimensional spaces.
Voorkennis
 Recommended: Calculus 1 for AT, EE, and TN and Calculus 2 for AT, EE, and TN, or similar courses up to and including double and triple integrals.
 Participating study
 Bachelor Electrical Engineering
 Module
 Module 3
Verplicht materiaal
Book
 Adams, R.A., Essex, C. (2018).Calculus: a Complete Course (Ninth or Tenth edition). Pearson. ISBN: 9780134154367
Aanbevolen materiaal
-
Werkvormen
Hoorcollege
 Aanwezigheidsplicht Ja

Werkcollege
 Aanwezigheidsplicht Ja

Zelfstudie met begeleiding
 Aanwezigheidsplicht Ja

Toetsen
 Vector CalculusOpmerkingWritten test
 Sluiten Help Print