Switch to English
Cursus: 202000968
Introduction to Physical Systems
Cursus informatie
Studiepunten (ECTS)3
VoertaalEngels D. Dresscher
Examinator D. Dresscher
Contactpersoon van de cursus D. Dresscher
Docent D. Dresscher
Docent E.J. Faber
Examinator E.J. Faber
OpmerkingPart of module 3 CreaTe
AanmeldingsprocedureZelf aanmelden via OSIRIS Student
Inschrijven via OSIRISJa
The detailed learning goals will be provided on Canvas and during the kick-off lecture. The learning goals have been organised in 11 groups.
The 11 groups of learning goals are:
  1. Modeling and parasitic effects
  2. Power continuity of an element and use power continuity to derive constitutive relations for power continuous elements.
  3. Electrical domain:  identify elements and provide their constitutive equations and impedances
  4. Mechanical domain: identify elements and provide their constitutive equations and create IPM model thereof
  5. Derive an analogous system to a given system, including elements and structures.
  6. First-order systems (differential equations, solutions, characteristic parameters, graphical responses)
  7. Second-order systems (differential equations, solutions, characteristic parameters, graphical responses)
  8. Filters and frequency domain descriptions of signals and systems
  9. Amplifiers and Opamps
  10. Practical and academic skills
One of the main attributes of a creative engineer is to be able to visualize and concretize ideas. A Creative Technologist will in many cases deal with physical systems that show some form of dynamical behavior (either in electrical, mechanical, another physical domain or a combination thereof). This course contributes to the theme of module 3 by supplying the knowledge for the analysis and design of electrical systems and the modeling of the dynamical behavior of systems. Two physical domains will be studied for this: the electrical and mechanical domains.
This course is strongly supported by the mathematical (IMM) course, especially the topic of differential equations. Furthermore, this course will emphasize and show the importance of simulations in the (engineering part of the) design process. To this goal, the program 20sim will be used. Simulations can be a crucial tool for an engineer to visualize and understand (dynamic) behavior of a physical system prior to realizing it or making a prototype of it.
Students show their growth in the competencies of this course by completing assignments. These assignments have a very intimate link with the lab sessions throughout this course. The lab sessions will form the practical component of this course to tie the theory, simulations and practical behavior together.

Topics covered in this course are:
  • Definition of System (properties) and ways to represent systems; concepts of storage and buffering; the concept of feedback
  • Integrators as description of buffers in dynamical systems; differential equations to describe system’s dynamics.
  • Analogies between mechanical and electrical (1st and 2nd order) systems; description of dynamic behavior of those systems via Ordinary Differential Equations; representation of such systems via Ideal Physical Models (IPMs)
  • Basic network analysis theory: non-ideal source models, calculations with capacitors and inductors (series and parallel elements, i-v relationships, reactances), step responses in first order RC and RL networks;
  • Filters: filters from a system’s perspective and analysis of 1st order, passive RC and RL filters. This includes also analysis of electrical signals in the frequency domain.
  • Amplifiers: amplifiers from a system’s perspective and analysis and application of the Operational Amplifier (Opamp) in four basic configurations;
  • Mechanical Systems; quantities (force, momentum, velocity, torque, angular velocity, power), elements (mass, spring, damper) and their relationships; mechanical sources and mechanical transformers, analysis of dynamic behavior of 1st and 2nd order mechanical systems.
The following items are deemed prior knowledge. They stem from the Sounds & Circuits course of module 2, Smart Environments.

Students are able to analyse and synthesise electric circuits using the following characteristics, laws, rules and applications:
  • DC and AC,
  • Ohm's law,
  • calculating the total (equivalent) resistance of a network of resistors using the rules for series and parallel combinations of resistors,
  • Kirchhoff's (current and voltage) laws,
  • Voltage division and the voltage divider set-up
Students are able to identify and calculate (analyse) the values of the following variables and their units in electric circuits:
  • Charge Q  or q(t) [C]
  • Current I or i(t) [A]
  • Voltage V or v(t) [V]; herein capital letters denote DC (static) situation and small letters denote ac (dynamic) situation.
Students are familiar with the following electrical elements and their symbolic representations, and know how to calculate their values and implement them in electrical schemes (of models of electrical devices and applications):
  • Ideal Voltage Source
  • Ideal Current Source
  • Resistance (element) and resistor (component) with value R [Ohm]
  • Capacitance (element) and capacitor (component) with value C [F]
  • Inductance (element) and inductor or coil (component) with value L [H]
Students know the I,v relationships of the three passive elements (R, L, C) and can calculate the expression / sketch the graph for current for a known voltage expression/graph and vice versa; this applies to the following wave shapes: square, triangle, sawtooth, sinusoid, exponential, polynomial wave shapes.

Students know and can apply the following items of the frequency domain analysis of signals:
  • The interpretation and analysis of a frequency spectrum (amplitude versus frequency) of a signal
  • Periodic signals have line spectra in their spectrum in which there are a fundamental frequency and higher harmonics which have frequencies that are integer multiples of the fundamental frequency.
Background knowledge on electric circuits can be found in Neil Storey, "Electronics, A Systems Approach", 6th edition, Pearson Education Limited, 2017. Chapters of interest are:
  • Chapter 1
  • Chapter 3.1 - 3.7
  • Chapter 4.1 - 4.4, 4.7 - 4.8
  • Chapter 5.1, 5.4 - 5.5, 5.8 -5.9
  • Chapter 6.1 - 6.2
Manual enrollment via Osiris is only for Creative Technology students. If you want to enroll, please contact K. Zalewska (
See contents
Participating study
Bachelor Creative Technology
Module 3
Verplicht materiaal
Neil Storey, “Electronics, a systems approach”, 6th edition, Pearson Education, Inc, 2017. ISBN-13: 9781292114064, ISBN-10: 1292114061. Book for Introduction to Computer Science (module 1), Sounds & Circuits (module 2) and Intro to Physical Systems
Aanbevolen materiaal
Dynamical Systems for Creative Technology , J. van Amerongen Third edition: 2012, Controllab Products B.V., Enschede, ISBN: 978-90-79499-07-6.


Overig onderwijs





Introduction to Physical Systems

Switch to English