Switch to English
Cursus: 202000168
Materials for the Design of the Future
Cursus informatie
Studiepunten (ECTS)15
Contactpersoondr. F. Grunert
VorigeVolgende 1
prof.dr. A. Blume
dr. W.K. Dierkes
Contactpersoon van de cursus
dr. F. Grunert
dr. F. Grunert
dr. M.A. Hempenius
AanmeldingsprocedureZelf aanmelden via OSIRIS Student
Inschrijven via OSIRISNee
  1. Understands how material properties are related to structure and composition of a material.
  2. Can explain manufacturing technologies and is able to select an appropriate technology for a specific problem.
  3. Can explain the principles of various techniques for material structure and composition characterization and select the appropriate techniques for a specific problem.
  4. Can search and find relevant literature and locate state of the art research on a materials science topic. Is able to use this information for a literature study that provides an advice for materials choices to realize (at first hand conflicting) functionalities.
  5. Is able to summarize the information from literature in a state-of-the-art overview.
  6. Can elaborate an advice for material choices to realize (at first hand conflicting) functionalities. Requirements of sustainability, environmental and health hazards, recyclability etc. have to be included.
  7. Can specify the requirements for a certain functionality.
  8. Can design a material to fulfil the technical functionality.
  9. Can evaluate the design from a technical and social view and formulate the impact for humans and society.

Interfaces and Catalysis
After this course the student is able to:
a)         analyse experimental data (like concentration changes in time) to find kinetic parameters like the activation energy, half-life time, reaction orders and rate constants.
b)         apply simple approximations (like the steady state approximation) to find rate laws from a given mechanism
c)         describe the central ideas in colloid science like surface energy, adsorption, wetting, surface potential, electro-osmosis, electrophoresis and colloidal stability.
d)         use expressions for capillary rise / pressure, adsorption isotherms and electrical double layers with experimental data
e)         understand the assumptions of the Langmuir and BET adsorption isotherms and their effect on the specific surface area; with given data (adsorbed amount versus (relative) pressures) the student should be able to calculate the specific area of a surface understand the assumptions of Langmuir-Hinshelwood en Eley-Rideal mechanisms and can calculate
            their effect on reaction kinetics
g)         describe the central ideas in transport of the reactants/products to/from the catalyst: Molecular and Knudsen diffusion, internal and external mass transfer limitations, Thiele modulus.
h)         predict the apparent activation energy for a catalyzed reaction in the case of no/internal/external mass transfer limitations
i)          describe and interpret results from important characterization techniques (chemisorption, electron microscopy, STM, XRD, XPS, LEED)
The rapid development of materials science and engineering has enabled the development of new devices that operate due to the combination of materials with different functionalities. Often different functionalities have been combined in one material as for example transparent and electrically conducting electrodes required for solar panels. Similar examples of the use of engineered materials with complex functionalities can be found in such diverse areas as IC-, battery, imaging, and sensor technology, and in the application of biomaterials, elastomers, polymers etc. Successes in all these fields were the result of systematic research and development based on a thorough understanding of the relation between material properties on the hand and the structure and composition on the other hand. With this knowledge, the synthesis of the desired materials could be tuned. The 2014 Nobel prize in physics is a prime example of this methodology that resulted in the invention of the blue led. This methodology is visualized with the two legs of the  materials science triangle:

In this module the students will learn:
  1. How properties of materials are related to structure and composition.
  2. How synthesis can be tuned to accommodate a desired structure and composition.
  3. To apply materials science in a competitive field.

One example is the application of this knowledge in the field of sensor technology in an elastomeric matrix. The module requires a basic understanding of materials as is part of the curriculum of Advanced Technology, Applied Physics, Electrical Engineering, Mechanical Engineering, Chemical Engineering and Biomedical Engineering. This HTHT module shares 1/3 of its courses with a second year AT module and also takes the materials science triangle as its starting point with different application areas (IC-technology, Catalysis). This knowledge is complimented by a dedicated class on composite materials on nano, micro and macro scale, including innovative material functionalities as e.g. sensor- and actuator technology. This HTHT module discerns itself from this standard module with the strong link to current industrial research through the input from invited speakers from industry and a strong integrating project.
Sufficient Materials background.
Verplicht materiaal
Aanbevolen materiaal
Interfaces and Catalysis, G.T. Barnes & I.R. Gentle, Interfacial science: an introduction, Second Edition, Oxford University Press, ISBN: 978-0-19-957118-5





Project supervised


IICM Written Test

IICM Assignment

IICM Project Report

IICM Project

Physical Chemistry of Interfaces

Chemistry and Technology of Organic Mate

Switch to English