- To be able to analytically compute the force by a flow on a construction based on the integral momentum equation, to be able to check the physical dimensions and to be able to analyse the asymptotic behavior.
- To be able to analytically compute a fully developed flow based on the reduced Navier-Stokes equations, including shear stress, to be able to check the physical dimensions and to be able to analyse the asymptotic behavior.
- To be able to compute temperature, pressure and density in a steady compressible flow based on streamline invariants and to know the conditions under which the relations used are valid.
- To be able to manipulate partial differential equations by means of the product rule, the chain rule and the Einstein summation convention, with the purpose to analyse the properties of flows.
- To be able to perform dimension analysis based on a given problem formulation with a number of dimensional parameters.
|
|
This is a part of module 7, ME 7 Fluid Mechanics & Heat Transfer of the Bachelor Mechanical Engineering.. See here for the compete description of the module.
Fluid mechanics is the discipline that describes the dynamics and mechanics of fluids (liquids and gases). Many applications are involved, such as computing forces on airplanes, determining the fluid velocity in an injection needle, the effects of a rough sea on the dynamics of a ship, making a wheather forcast or even describing trafic on roads.The purpose of the discipline is to describe characteristic variables such as velocity, density, pressure and temperature as functions of space and time.In the course Fluid Mechanics 1 the integral and differential formulations of the three conservation principles of mass, momentum and energy are derived. Limiting cases such as steady and inviscid flows are discussed. Several applications of the integral formulations are treated such as computing the force on a construction. Fully developed incompressible flows are introduced and the reduced Navier-Stokes equations are derived. Also introduced are the concepts of dimension analysis, similarity and Reynolds number. Subsequently compressible flows are discussed based on a perfect gas modeling. Finally the concepts of total pressure, -density and -temperture are introduced.
Non-ME students can take this course if they meet the entry requirements.
|
 |
|