Sluiten Help Print
 Cursus: 201900085
 201900085Nonlinear control
 Cursus informatie
Cursus201900085
Studiepunten (ECTS)5
CursustypeCursus
VoertaalEngels
Contactpersoondr. I.S.M. Khalil
E-maili.s.m.khalil@utwente.nl
Docenten
 Contactpersoon van de cursus dr. I.S.M. Khalil Examinator dr. I.S.M. Khalil
Collegejaar2021
Aanvangsblok
 2A
OpmerkingThis course is recommended for students who have taken Robotics for Medical Application in quartile 1B.
AanmeldingsprocedureZelf aanmelden via OSIRIS Student
Inschrijven via OSIRISJa
 Cursusdoelen
 body { font-size: 9pt; font-family: Arial } table { font-size: 9pt; font-family: Arial } The goal of this course is to allow students to design control systems for systems with nonlinear dynamics. These control systems should meet certain stability specifications and provide reasonable robustness. By the end of the course, each student should be able to do the following: • Analyze the qualitative behavior near equilibrium points of nonlinear systems and robots. • Understand the fundamental properties of nonlinear systems (existence and uniqueness, differentiability of solutions and sensitivity, dependence on initial conditions and parameters), and implement these techniques on robotic systems. • Analyze the controllability and observability of nonlinear systems and robotic systems. • Analyze the stability of nonlinear systems. • Design of feedback control systems for nonlinear systems and robots.
 Inhoud
 body { font-size: 9pt; font-family: Arial } table { font-size: 9pt; font-family: Arial } 1 Introduction. Similarity transformations, diagonal form and Jordan form, functions of a square matrix, Lyapunov equation, quadratic form and positive/negative definiteness Singular value decomposition, norms of matrices, solution of LTI state equations, Input-output stability of LTI systems, internal stability, Lyapunov theorem, Controllability, observability, canonical decomposition, minimal realizations and coprime fractions, state feedback and state estimators   2 Nonlinear Systems. Multi equilibria, qualitative behavior near equilibrium points, limit cycles numerical construction of phase portraits. bifurcation analysis   3 Fundamental properties. Existence and uniqueness, continuous dependence on initial conditions and parameters, differentiability of solutions and sensitivity equations, comparison principle   4 Lyapunov Stability. The invariance principle, comparison functions, input-to-state stability   5 Input-Output Stability. Input output stability, L stability, L2 gain Feedback system: The small gain theorem   6 Passivity. Passivity, memoryless functions, state models, feedback systems: passivity theorem, absolute stability, circle criterion, Popov criterion   7 Feedback Control. Feedback control: Stabilization via linearization, integral control, integral control via linearization, full-state linearization, state-feedback control, Sliding mode control, Lyapunov redesign, backstepping, passivity-based control   8. Examples. Design of feedback control system for medical robots.
Voorkennis
 Students are expected to have background knowledge of differential equations, linear systems, linear control theory and modeling.Familiarity with programming, mechanical system design and finite element analysis is recommended.
 Participating study
 Master Systems and Control
 Participating study
 Master Mechanical Engineering
 Participating study
 Master Electrical Engineering
Verplicht materiaal
-
Aanbevolen materiaal
Book
 Hassan K. Khalil, Nonlinear Systems, Third Edition, Prentice Hall, 2002, ISBN 0-13-067389-7
Werkvormen
Assessment
 Aanwezigheidsplicht Ja

Colloquium

Colstructie

Eindproject

Excursie

Hoorcollege
 Aanwezigheidsplicht Ja

Ontwerp

Opdracht
 Aanwezigheidsplicht Ja

Overig onderwijs

Practicum
 Aanwezigheidsplicht Ja

Project begeleid
 Aanwezigheidsplicht Ja

Stage

Veldwerk

Vragenuur

Zelfstudie met begeleiding
 Aanwezigheidsplicht Ja

Toetsen
 Assignment
 Sluiten Help Print