Kies de Nederlandse taal
Course module: 201400282
Course infoSchedule
Course module201400282
Credits (ECTS)5
Course typeCourse
Language of instructionEnglish
Contact B.C. Schwab
Contactperson for the course B.C. Schwab
Examiner B.C. Schwab
Academic year2022
Starting block
Application procedureYou apply via OSIRIS Student
Registration using OSIRISYes
The aim of the course is to obtain a basic understanding of the theory of electromagnetic fields and of bioelectric phenomena, with emphasis on both a formal description and numeric simulations. Knowledge on electromagnetics serves as the basis for understanding various clinical methods for measurement and analysis of these bioelectrical signals (diagnosis), for development and use of electrical and magnetic techniques for nerve and muscle stimulation (therapy). This course provides the foundation to understand and to improve such methods.
In this course, we introduce the theory of volume conduction of ionic currents (bioelectric sources) based on Maxwell's equations. This generalized approach can be applied to various electrophysiological and biophysical processes underlying the generation of bioelectrical activity (nervous system and muscles) which generate electrical and magnetic signals that can be measured noninvasively on the body surface, such as the electroencephalogram (EEG)/magnetoencephalogram(MEG), the electrocardiogram (ECG), and the electromyogram (EMG). These signals provide information on the (patho)physiological condition of the corresponding tissues in clinical situations.
With this course, students have to be able to:
  • analytically describe static electric and magnetic fields of simple setups (e.g. current sources in a homogeneous medium)
  • analytically compute simple cases of electromagnetic waves based on Maxwell’s equations
  • numerically compute examples of static electric and magnetic fields in more complex volume conductors
  • adapt these numeric simulations to problems in biomedicine, e.g. neurology or cardiology
  • write a short paper on a specific problem with clinical relevance.
• There will be 6 assignments and 1 final assignment that students will work on during the course.
• It is mandatory to be present in the tutorials for assignments 1-6.
• Assignments 1-6 are assessed and at least 55% of the points must be obtained.
• Assignments 1-6 must be completed before the final assignment can be handed in.
• A minimum grade of 5.5 for the final assignment is required to validate the course. The grade of this final assignment is the final grade for the course.
Assumed previous knowledge
Electric circuit analysis, Matlab basic programming skills, vector analysis, basic neurophysiology.
Participating study
Master Biomedical Engineering
Participating study
Master Electrical Engineering
Required materials
Recommended materials
Lectures on Physics Volume II, Feynman, ISBN 978-0-465-07998-8
Bioelectricity – A Quantitative Approach, Plonsey and Barr, ISBN 978-0-387-48864-6
Bioelectromagnetism, Malmivuo and Plonsey, ISBN 9780195058239 / 0195058232
Instructional modes

Self study without assistance

Presence dutyYes


Kies de Nederlandse taal