Kies de Nederlandse taal
Course module: 191121710
Course infoSchedule
Course module191121710
Credits (ECTS)5
Course typeCourse
Language of instructionEnglish
Contact W.J.B. Grouve
Lecturer R. Akkerman
Contactperson for the course W.J.B. Grouve
Lecturer W.J.B. Grouve
Lecturer L. Warnet
Academic year2021
Starting block
Application procedureYou apply via OSIRIS Student
Registration using OSIRISYes
Please note: This course will be offered during the first AND second quartile

After the course the student is able to:
  1. Derive the properties of a continuous fibre reinforced composite ply as a function of its constituents
  2. Determine and analyse the stress – deformation relation of a continuous fibre reinforced composite ply for varying fibre orientation
  3. Derive and analyse the loading – deformation relation of a laminated plate
  4. Classify the way composite materials fail and quantify first-ply failure in a laminate
  5. Choose and advise on manufacturing technologies (for a given set of requirements on the part to be made)
  6. Design a lay-up for plate- or cylinder-like composite structures given the loading requirements
  7. Organize and conduct a small-scale industrial project related to composite materials or manufacturing processes
Course Description
The Composites course gives an introduction into the mechanical behaviour of continuous fibre reinforced composites and their manufacturing processes. The composite materials considered are layered structures (laminates) built from thin fibre reinforced polymer layers (laminae). The fibre orientation is usually chosen to match the loading direction. As a result, the material obtained is tailor-made, but also highly anisotropic. Moreover, the heterogeneous nature of composite makes them different from conventional materials in terms of processing.
The lectures mainly deal with the Classical Lamination Theory, which can be used to describe the response of a composite laminate to thermo-mechanical loading. The theory starts from micromechanics to describe the properties of a single layer based on the fibre and polymer properties and their content fractions. Subsequently, the behaviour of a laminate, which is created by stacking several layers in different orientations, can be described using the Classical Lamination Theory. Finally, the failure resistance of composite materials is highlighted. Apart from the mechanical behaviour of laminates, the lectures will also address composite applications, materials and manufacturing methods.
The course gives the opportunity to apply the obtained knowledge during practical exercises, involving for example the design of a composite drive shaft or a hydrogen storage tank. Additionally, there will be a lab activity on the topic of composite manufacturing or mechanical testing. Finally, a composites related company is visited by groups of students to perform a (small) a company assignment, the results of which will be presented during a 'Composites' conference.

Please note: This course will be offered during the first AND second quartile
Assumed previous knowledge
Mandatory: Bachelor Degree in Engineering
Participating study
Master Mechanical Engineering
Participating study
Master Biomedical Engineering
Participating study
Master Industrial Design Engineering
Required materials
Course material
Handouts, provided by lecturers
Recommended materials
Instructional modes



Kies de Nederlandse taal